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Abstract

Background: The classification of motor imagery electroencephalogram

(MI-EEG) is a pivotal task in the biosignal classification process in the brain-

computer interface (BCI) applications. Currently, this bio-engineering-based

technology is being employed by researchers in various fields to develop cutting-

edge applications. The classification of real-time MI-EEG signals is the most

challenging task in these applications. The prediction performance of the ex-

isting classification methods is still limited due to the high dimensionality and

dynamic behaviors of the real-time EEG data.

Proposed Method: To enhance the classification performance of real-time

BCI applications, this paper presents a new clustering-based ensemble technique

called CluSem to mitigate this problem. We also develop a new brain game
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called CluGame using this method to evaluate the classification performance

of real-time motor imagery movements. In this game, real-time EEG signal

classification and prediction tabulation through animated balls are controlled

via threads. By playing this game, users can control the movements of the balls

via the brain signals of motor imagery movements without using any traditional

input devices.

Results: Our results demonstrate that CluSem is able to improve the

classification accuracy between 5% and 15% compared to the existing meth-

ods on our collected as well as the publicly available EEG datasets. The

source codes used to implement CluSem and CluGame are publicly available

at https://github.com/MdOchiuddinMiah/MI-BCI_ML.

Keywords: Brain Computer Interface (BCI); Human Machine Interface

(HMI); Brain Engineering; Motor Imagery Electroencephalogram (MI-EEG);

Clustering; Ensemble Learning.

1. Introduction

Brain engineering is an emerging field in the science and technology. This

multidisciplinary branch consists of the combination of various fields such as

physics, chemistry, biology, computer science, and mathematics [1]. It also in-

corporates the concepts and methods of other fields such as clinical medicine

and engineering [2]. Brain-Computer Interface (BCI) is a branch in brain en-

gineering that aims to solve practical problems of the life sciences. BCI and

Human Machine Interface (HMI) are the modern technologies that are used as

tools to establish communication between users and machines [3].

BCI technology incorporates neurophysiological activities as input signals

and interprets them into meaningful commands employing Machine Learning

(ML) algorithms [4]. BCI technology has brought tremendous opportunities

in the medical field especially for the treatment and rehabilitation of people

with disabilities [5, 6]. Around the world, millions of people are affected by

various forms of disabilities and physical impairments due to different reasons

2

https://github.com/MdOchiuddinMiah/MI-BCI_ML


such as childhood disability, old-age disability, early-age disability, acciden-

tal/unforeseen issues, and serious health problems [7]. For people with dis-

abilities, it is extremely difficult or, in some cases, impossible to do day-to-day

chores without any assistance from a caregiver.

A wide variety of equipment and devices are invented in this field for rehabil-

itating and aiding people with disabilities [8, 5]. This technology allows people

with disabilities to command and control external devices such as computers,

wheelchairs, and robots by utilizing their thoughts. Notwithstanding, the hori-

zon of this field has been broadened to a wide range of non-medical applications

such as gaming, entertainment, military, and meditation training [9, 10]. The

knowledge of BCI can also be applied in smart environment systems like smart

houses or smart workplaces. This technology has also opened a new window

of opportunities for the gaming and entertainment industry. Furthermore, dif-

ferent types of games already being developed using this technology including

games to relieve users from stress [11, 12].

Fundamentally, BCI technology can be employed in three ways based on

the process of signal acquisition from brain [13]. First is to place wires inside

the grey matter of the brain to intensify brain signals. This method is called

invasive BCI [14, 3]. The second way is to place electrodes on the surface of

the scalp to measure activities from a huge group of neurons. This method is

called non-invasive BCI [15, 16]. In comparison with invasive BCI, this method

is less sophisticated but at the same time, it does not intensify the input signals

as good [17, 18]. The third type of BCI is called partially invasive BCI. In this

technique, wires are placed inside the brain but above the grey matter [13, 17].

During the past few years, a wide range of machine learning methods includ-

ing ensemble classifiers has been used for motor imagery EEG signal classifica-

tion. We investigated assessed the performance of existing single and ensemble

classifiers in real-time BCI applications in our prior studies [17, 14, 19]. It is

well-known that the existing classifiers are not very accurate due to the high

dimensionality and dynamic behaviors of the real-time EEG data [20, 21]. The

signals may be biased with artifacts and noise due to the low conductivity of
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the electrodes with the scalp [1, 6].

The objective of this paper is to extend our prior works and ameliorates the

classification performance by handling multiple electrodes or neurons data at

the same time and proposing a cluster-based ensemble classifier. Our proposed

model, which is called CluSem, first clusters the input data based on the position

of the electrodes. It also selects the model dynamically based on the electrode

locations to classify real-time EEG data. It then uses an ensemble classifier to

classify the motor imagery EEG signals. We compare CluSem with different

classifiers that have been widely used to tackle this problem such as Artificial

Neural Network (ANN), Support Vector Machine (SVM), Näıve Bayes, Decision

Tree, Random Forest (RF), Bagging, and AdaBoost. Our results illustrate

that CluSem can significantly outperform those models. CluSem demonstrates

between 5% and 15% prediction enhancement over those existing methods found

in the literature.

Besides, we also developed a new brain game called CluGame to distin-

guish human thoughts in real-time based on CluSem. To develop this game,

we employed the threading technique to control the signal classification and

prediction tabulation via animated ball in real-time. The CluGame can be

used for rehabilitation as well as upgrading user well-being. The user can

exercise its concentration to recover from attention deficiency and boost at-

tention via playing this brain game. CluGame can also be used for gam-

ing and entertainment purposes. The source codes of the CluSem and the

CluGame are publicly available at https://github.com/MdOchiuddinMiah/

MI-BCI_ML/tree/master/Brain-Game. We also generate new MI-EEG brain

data for our experiments which is also publicly available at https://github.

com/MdOchiuddinMiah/MI-BCI_ML/tree/master/Datasets.

The remainder of this paper is organized as follows: Section 2 presents the

related works. Section 3 illustrates brain measurement techniques, signal ac-

quisitions, pre-processing, feature extraction, and datasets descriptions. Sec-

tion 4 covers supervised classification and the proposed clustering-based ensem-

ble method CluSem. Section 5 provides experimental results and introduces
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CluGame. Finally, Section 6 presents conclusions and future direction.

2. Related Works

During the last decade, a wide range of machine learning approaches has

been proposed to classify the motor imagery EEG signal [17, 20, 20, 22]. In

real-time applications, the reported prediction performance has remained rela-

tively low due to the high dimensionality and dynamic behaviors of the real-time

EEG data [4, 23, 21, 24]. In the MI EEG signal classification study, Kumar et

al. [25] employed a mutual information-based frequency band selection approach

to utilize all information that is got from different channels. Furthermore, they

introduced a sub-band between 7 and 30 Hz to cover a wide range of frequen-

cies. To extract features, linear discriminant analysis is used for each filter

bank. Extracted motor imagery EEG data are classified by a popular algorithm

named support vector machine. In another study, Kumar et al. [26] proposed

a common spatial-spectral pattern (CSSP) and optimization of temporal filters

to enhance MI EEG classification accuracy. To augment the spatial resolution,

CSSP is introduced. On the other hand, a temporal filter is used to optimize ev-

ery subject for each frequency band that carries informative information. Later

on, Kumar et al. [27] proposed a spatial-frequency-temporal feature extrac-

tion (SPECTRA) tool that will find features from real-time BCI systems. It

shows enhancement in brain wave signal recognition and outperformed other

competing methods using three public benchmark datasets.

Recently, Raza et al. [1] presented an adaptive ensemble approach to EEG

classification to handle non-stationarity in the motor imagery task. Their pro-

posed model collected MI correlated brain responses and extracted spatial pat-

tern structures. They then developed their ensemble classifier, to overcome the

deviations in streaming data input. Their results demonstrated that using an

Ensemble classifier obtains better results than using single classifiers. In the

same year, Sreeja et al. [28] proposed a sparse based classification method to

classify MI related tasks from EEG data. To reduce the computational time,
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they only used wavelet energy without any pre-processing as a feature to clas-

sify MI data. They showed that their proposed approach outperforms existing

classifiers.

Later on, Li et al. [2] proposed a novel decoding approach employing Over-

lapping Averaging (OA) to interpret MI-EEG data. To overwhelm the con-

straint of the general Region of Interest (ROI) based decrypting approach, they

used Weighted Minimum Norm Estimate (WMNE). They studied their model

on a public dataset and achieved higher decrypting accuracy than existing ap-

proaches. In a different study, Pattnaik and Sarraf [29] attempted to apply left

and right-hand movement classification using raw EEG signals. Before applying

the movement classification, they removed the artifacts in the obtained signals

employing a low pass filtering technique.

Recently, Shanechi [22] examined the decoding algorithms made in the BMI

study. They hypothesized that it is possible to design a motor BMI as a closed-

loop control system. They inspected current decoder designs that emphasize

the unique properties of BMI. Moreover, they discussed possible opportunities

to formulate a control-theoretic framework to design BMI, as well as, the devel-

opment of more advanced BMI control algorithms. In the same year, Mehmood

et al. [30] proposed a method that considerably enhances the rate of emo-

tion recognition for the popularly implemented spectral power band routine.

Features selected by this routine performed better than both univariate and

multivariate attributes. The optimal attributes were later processed to classify

emotion by applying KNN, SVM, LDA, Näıve Bayes, RF, and Deep Learning

(DL) classifiers.

In a different study, Mamun et al. [19] introduced a new technique to pro-

cure frequency reliant neural synchronization as well as inter-hemispheric con-

nectivity properties. They based their method on Granger causality as well as

Wavelet Packet Transform (WPT) approaches. Their approach is capable of

decoding movement associated behaviors accurately, from the registered Local

Field Potentials (LFPs) activity. The finding of this study shows that nominated

optimum neural synchronization associated with inter-hemispheric connectivity
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has the potential to capture signals to supplement the adaptive Brain-Machine

Interface (BMI). Furthermore, Lu et al. [31] investigated the prospect of ame-

liorating performance in a Transcranial Doppler ultrasonography (TCD) based

BCI. They used the structures and classifiers that are computationally suitable

for online application by running an offline investigation of TCD recordings and

obtained promising results. Combining SVM classifiers with Weighted Sequen-

tial Forward Selection (WSFS), they outperformed similar studies found in the

literature.

Afterward, Sun et al. [20] investigated a wide range of ensemble classi-

fiers such as bagging, boosting, and random subspace to classify MI related

tasks from EEG signals. They proposed an ensemble of three classifiers namely,

SVM, DT, and K-Nearest Neighbors (k-NN) to solve this problem and achieved

promising results. Later on, Lebedev and Nicolelis [32] reviewed some of the

essential challenges encountered by BMI research. They proposed a chain of

milestones to convert up to date experimental advances into viable medical

applications within the coming 10 to 20 years. The guideline they provided

underscores the contemporary history of the BMI and puts a strong emphasis

on the influential factors related to its growth.

3. EEG Signal Acquisition

3.1. Functional Areas of Brain

The human brain is the main organ in the nervous system [19]. The central

nervous system has consisted of both the brain and spinal cord. The human

brain acts as the master of the whole body, as it controls almost all of the

body activities. It performs different functions such as receiving, processing,

and generating information [23]. It acts as a receiver for the sensory organs

sending information to the brain. The brain then integrates, coordinates, and

processes the given input information to produce decisions and instructions to

the rest of the body [29].
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Different brain parts are responsible for completing different tasks. Among

them, the motor system is the part that both generates and controls the move-

ments of the body [19]. Also, the nerves do the job of transferring the motor

system-generated movements from the brain to the motor neurons in the body.

In fact, the action of the muscle is governed by this process. Using the spinal

cord, the corticospinal tract passes movements to the torso as well as to the

limbs. The eyes, mouth, and face related movements are carried by the cranial

nerve [32].

The motor cortex generates the movement of arms and legs. It consists of

three parts namely, primary motor cortex, premotor cortex, and supplementary

motor area [31]. Locating on the frontal lobe of the brain, the primary motor

cortex is one of the essential areas that are necessary for motor function. Ad-

ditionally, the primary motor cortex produces neural impulses and then these

impulses control the execution of movement [14].

3.2. Brain Measurement Techniques

In BCI, different kinds of neurological modalities are applied to obtain neu-

rological brain signals [19]. Electroencephalography (EEG) is one of the popular

methods for measuring brain activities. It is commonly a non-invasive approach

and assesses voltage oscillations ensuing from ionic current inside the brain

neurons [13]. Other non-invasive methods for measuring brain activities are

positron emission tomography (PET), magneto-encephalography (MEG), Tran-

scranial Doppler ultrasonography (TCD), and functional magnetic resonance

imaging (fMRI) [10, 33]. Some of the invasive electrophysiological methods are

namely, local field potentials (LFPs), electrocorticography (ECoG), and single-

unit recording [19, 14]. EEG, ECoG, LFPs, and single-neuron recordings are

popular because they are relatively simple and less costly. They also produce,

high temporal resolution [19, 34]. On the other hand, fMRI, MEG, and PET

are very costly and time-consuming [13]. In our experiment, we used Emotiv

EPOC+ EEG neuroheadset because it is less sophisticated, more cost-efficient,

and easy to use [17, 14].
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(a) (b)

Figure 1: (a) Electrodes distribution of Emotiv EPOC+ neuroheadset (b) following the inter-

national 10-20 system. Source: Emotiv systems.

3.3. EEG Emotiv EPOC+ Neuroheadset

The Emotiv EPOC+ 14 channels is an EEG neuroheadset that can produce

measurable electric potentials to assess brain activities [35]. It is equipped with

14 saline sensors (electrodes) which are put on the scalp of the brain according

to the international 10 to 20 system. In the 10 to 20 system, the real distance

among two adjacent sensors can be either 10% or 20% [35]. The electrodes

are situated in F3, F4, FC5, FC6, F7, F8, AF3, AF4, T7, T8, O1, O2, P7, and P8 lo-

cations and two reference electrodes- Driven Right Leg (DRL) and Common

Mode sense (CMS) are located at P3 and P4 locations [35, 14, 17]. The elec-

trodes distribution of Emotiv EPOC+ neuroheadset, employing the 10-20 sys-

tem is shown in Fig. 1.

3.4. Signal Acquisition, Pre-processing, and Feature Extraction

In this study, twenty healthy subjects (age 18± 8) had participated with no

prior neurological disorders. They were informed about the experimental proce-

dures and gave informed consent before the experiment. Firstly, we developed

an application program via Java-based technology inheriting Emotiv SDK and

utilizing SDK API to acquire raw EEG brain signal from Emotiv neurohead-

set. We get the European Data Format (EDF) formatted data from the SDK
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(a) (b)

Figure 2: Experimental paradigm. One trial of the MI experiment. (a) Training points for 30

seconds (b) Testing points for 15 seconds.

API. After that, we convert this file to CSV format via our program where we

get the different frequency band values. This program along with CluSem and

CluGame is also available at https://github.com/MdOchiuddinMiah/MI-BCI_

ML/tree/master/Brain-Game/eeg_data_recording

As we mentioned earlier in Section 3.1, the primary motor cortex produces

neural impulses that control the execution of movements. To collect this signal

for our MI hand movement experiment, we had laid the headset based on the

international 10-20 system. According to the electrode distribution in Fig. 1

and user manual of Emotiv which is available at https://emotiv.gitbook.

io/epoc-user-manual, neuroheadset electrodes: F3, FC5, FC6, and F4 located

on the frontal lobe which is familiar as the primary motor cortex of the brain.

Furthermore, we had assessed the MI hand movement brain signal of 12 sensors

without two reference sensors: P3 and P4. From the experiments and our prior

works [14, 17], we had elected these sensors which are fitted in the primary

motor cortex area of the brain. Additionally, these four electrodes are not placed

in the exact same position where C3, C4, and Cz channels—these channels are

commonly used for MI-based BCI to record important characteristics of MI—are

located [3].

Also, this neuroheadset amalgamates a signal amplifier, 0.16Hz C-R high-

pass filter, 85Hz analog low-pass filter, and a digital notch filter between 50Hz

and 60Hz [35, 36]. This notch filter assists to neutralize the high-frequency

noise in the signal. A sequential sampling at 128 samples per second is em-
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ployed to convert an analog signal to digital by Delta-Sigma ADCs filtering

[35, 37]. To acquire brain signal, we had connected the headset with the de-

veloped program computer through a wireless connection to the USB dongle

and collected MI-EEG data for binary and ternary classes—the class values are

steady, left, and right–hands. For each trial, visual cues on a computer screen

with arrows pointing left and right were displayed for 30 seconds. These peri-

ods were interleaved for 2 seconds of fixations cross and 2 seconds of rest. Fig.

2 shows the 30 seconds of the visual cue of the training set and 15 seconds

of the visual cue of the testing set for each trial. We collected the data from

twenty healthy subjects. From each subject, we had taken two trials and one

trial of each class to engender training and testing points, respectively. More

details about our recorded training and testing datasets are also available at

https://github.com/MdOchiuddinMiah/MI-BCI_ML/tree/master/Datasets.

Figure 3: Sampling raw EEG data 128 samples per second, filtering with Delta-Sigma ADCs

filtering, and calculate the PSD between band 4 to 45 Hz.

To compute the band power of different frequency bands, we first calculate

the Power Spectral Density (PSD) between band 4 to 45 Hz. PSD is a positive

real function that is associated with a stationary stochastic process to measure

the power strength at each frequency band [37, 38]. The fast Fourier Transform

(FFT) method is directly used to compute PSD [14, 39]. By using a 2 seconds
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window size and 0.5 seconds step size, the average BP is calculated from the

PSD of Theta (θ), Alpha (α), Low beta (β), High beta (β), and Gamma (γ)

[14, 17, 27, 40]. Fig. 3 reveals the procedures how we acquire raw EEG data and

prepare it to train the classification models through pre-processing and feature

extraction techniques. Also, we extract features from the frequency bands, we

compute the average band power (BP) of Theta (θ), Alpha (α), Low beta (β),

High beta (β), and Gamma (γ) EEG neural frequency rhythms via the appli-

cation program. EEG brainwaves, ranges, and their association with different

activities in the brain are described in Section 3.5. Also, data pre-processing

and band power calculation codes which we employed are available at https://

github.com/MdOchiuddinMiah/MI-BCI_ML/tree/master/Pre-Processing.

3.5. EEG Data Descriptions

The EEG measures different neural frequency rhythms that are associated

with different regions, pathologies, or brain states. Neural frequency is assessed

by calculating the number of waves repeats within a second [13, 41]. Table 1

illustrates the EEG brainwaves, their ranges, and their association with different

activities in the brain [13, 3]. Most of the brain oscillations are connected with

motor and sensory actions and associated with different brain functions [42, 34].

Table 1: EEG brainwaves, ranges, and their association with different activities in the brain.

Rhythms Band (Hz) Different band activities inside the brain

Theta (θ) 4 to 8 Sleeping, drowsiness, meditation, relaxed

Alpha (α) 8 to 12 Calmness, learning, body integration, relaxed

Low beta (β) 12 to 18 Active concentration, arousal, conscious thought

High beta (β) 18 to 25 Anxiety, task-oriented, logical thinking

Gamma (γ) 25 to 45 Cognitive functioning and high processing tasks

We have divided the recorded MI-EEG dataset into binary-class and ternary-

class sets based on the class values. We also collected an EEG eye state

dataset from the UCI Machine Learning repository at https://archive.ics.

uci.edu/ml/datasets/EEG+Eye+State to investigate the generality of our pro-

posed clustering-based ensemble method. This EEG dataset is collected via an
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Emotiv EPOC+ neuroheadset from the EEG measurement of two different eye

states [37]. The comprehensive information of binary-class, ternary-class, and

EEG eye state datasets are presented in Table 2.

Table 2: Hand movement MI-EEG and EEG eye state datasets distribution.

Datasets Attributes Attribute Training Testing Classes

Number Types Data Points Data Points

Binary-class 5 Real & 22, 800 5, 400 2

MI-EEG Nominal

Ternary-class 5 Real & 34, 200 8, 100 3

MI-EEG Nominal

EEG eye state 15 Real & 14, 980 4, 494 2

Nominal

3.6. Visualization Brain Activities

The motor imagery hand movement deviations are found to be very high in

the recorded MI-EEG responses as demonstrated in Fig. 4. We used the mean

value of the five band power (BP) of different frequency bands to visualize the

three activities. In this figure, we can see the average band power (BP) is higher

for the activity of hand movements than the steady-state. It represents that the

amplitude deviation between the movements and the steady is large. However,

classifying this pattern for left and right-hand movements is a challenging task.

As mentioned in Section 3.1, the primary motor cortex produces neural impulses

to control the execution of movements left and right-hands. These movements

are produced from the related area and generate similar patterns that introduce

difficulty to classify, effectively.

4. Classification

Classification task consists of training and testing steps [14]. In the training

step, the labeled data points are used to train a classifier and generate a model.

In the testing step, the unseen and unused data points are classified using the

trained model to investigate its performance [43]. In this section, N is the
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(a) (b)

(c) (d)

Figure 4: Dissimilar events inside the brain: (a) steady and right-hand movement; (b) steady

and left-hand movement; (c) right and left-hand movement; (d) steady, right, and left-hand

movement.
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number of instances in the dataset D, and D = {x1, ..., xN} where each data

point xn ∈ D contains F features (Af , f = 1, ..., F ). In addition, anf illustrates

the value of attribute Af of data point xn and each one belongs to a given

class of C among {c1, ..., cl, ..., cM}. Here, we will briefly describe our proposed

clustering-based ensemble model with four single classifiers and three ensemble

learning methods.

4.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a brain-inspired classification system

based on the arrangement of biological neural networks [44]. It consists of an

input layer, an output layer, and sometimes single or multiple hidden layers that

exist to find complex patterns. The network contains several connections. Each

connection computes the output of a neuron and then used by another neuron

as input [30, 45]. Weights are allocated to each connection to reveal relative

importance. Initially, all the weights are assigned randomly. After that, each

neuron learns from the set of training instances D, computes the error according

to the desired output of D, and adjusts the weights based on errors, accordingly.

The backpropagation algorithm is employed updating weights to ameliorate the

network until achieving the pure output weight [44, 46]. In this study, we

use a Multi-Layered Perceptron (MLP) which is a feedforward artificial neural

network (ANN) [44, 47]. Our employed MLP consists of one hidden layer and

100 nodes in this layer. We used one MLP hidden layer with 100 nodes, a

learning rate 0.001, and 200 as the maximum number of iterations to enhance

the classification performance.

Ij =

N∑
i=1

WijOi + θj (1)

Oj =
1

1 + e−Ij
(2)

To compute neuron input I, it uses bias weight θ, connected all neurons

weightW and outputO [44]. After that, neuron input I manipulates to calculate
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neuron output O employing different activation functions. In this study, neuron

input I and output O are calculated by employing non-linear sigmoid function

which are illustrated in Eq. 1 and 2 [30, 48, 49].

Wki = Wki + ηOkOi(1−Oi)
N∑
i=1

WijErrjOj(1−Oj) (3)

In this model, Eq. 3 is employed iteratively to adjust all the weights of the

network. Here, the learning rate, η represents the proportion of corrective steps

to adjust the errors of the model in each iteration [44, 30].

4.2. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised classifier that explores

training instances and discovers hyperplanes, or support vectors to maximize

the margin among the classes [50]. In 2-dimensional space, the support vectors

split a plane into two chunks through a line where each cluster denotes individual

classes [19, 45]. A set of training data points, D= {x1, ..., xN} having N number

of data points with class values C= {1,−1} is employed to train the classifier.

In this model, we select two parallel support vectors with supreme probable

distance to separate classes. The maximum distance between two hyperplanes

is called the margin [19]. A linear kernel is used with maximum iterations

number to execute the algorithm.

−→m .−→x − b = 0 (4)

−→m .−→x − b = 1 (5)

−→m .−→x − b = −1 (6)

Any hyperplane can be described as the Eq. 4 where −→m is a normal vector

and parameter b/|−→m | regulates the offset of the support vector from the origin

16



[50]. Equations 5 and 6 are employed when the data points xn are on or above

the hyperplane and on or below the hyperplane respectively [22].

d =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
(7)

The distance, d among these two support vectors is 2/|−→m |. Hence, we have to

minimize the |−→m | to maximize the d. The distance is calculated by manipulating

the distance among a point and plane equation that are presented in Eq. 7

[50, 19].

4.3. Näıve Bayes Classifier (NB)

Näıve Bayes classifier is a probabilistic machine learning classifier based on

Bayes’ theorem. It produces probability scanning the training instances only

once and can handle the missing attribute values easily by omitting their prob-

abilities [51, 45]. It takes a dataset, D with F number of attributes as input

to build the classifier model. For testing a new instance, xnew, the classifier

will calculate the posterior probability and assign a class label with the highest

probability.

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(8)

In Eq. 8, Bayes’ theorem states mathematically as P (X) is constant for

all classes [51, 52]. Here, P (X|Ci) and P (Ci) represents conditional and priori

class probabilities, respectively. For instance, NB classifier predicts a new data

point, X as class Ci, if P (X|Ci)P (Ci) is greater than P (X|Cj)P (Cj) in a binary

classification task [43].

P (X|Ci) =

F∏
f=1

P (xf |Ci) (9)

P (xf |Ci) =
1√
2πσ

e−
(x−µ)2

2σ2 (10)

For data point X, xf denotes the value of feature Af . The probability

P (xf |Ci) can be simply assessed from the training instances, if feature, Af is
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categorical-valued. Otherwise, if feature Af has a continuous-value, then Af is

estimated through a Gaussian distribution with standard deviation σ and mean

value µ shown in Eq. 10 [51].

4.4. Classification and Regression Tree (CART)

The CART uses Gini Index that produces binary classification tree to make

decisions [14]. Firstly, it assesses the adulteration of dataset, D where probabil-

ity Pn is estimated through |cl, D|/|D| presented in Eq. 11 [51]. Here, the sum

is calculated over C classes and each instance, xn ∈ D belongs to a class cl.

Gini(D) = 1−
N∑
n=1

P 2
n (11)

It splits the dataset, D considering binary split and the weighted sum of the

adulteration of every resulting sub-data. For instance, the dataset, D splits into

D1 and D2 considering the Gini Index of D which is calculated in Eq. 12 [51].

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (12)

For each attribute, Af considers each probable sub-data and is used as the

splitting attribute which ameliorates the reduction impurity, as shown in Eq.

13 [51].

∆Gini(A) = Gini(D)−GiniA(D) (13)

According to the Gini Index impurity, it will split the dataset and create

leaf nodes until all the splitting data belongs to their corresponding classes.

Algorithm 1 outlines the Classification and Regression Tree Algorithm [51]. To

achieve the best result, the maximum depth of the tree and the best splitting

technique used at each node.

4.5. Random Forest (RF)

Random forest is an ensemble approach to classify a high volume of data

with superior accuracy [43]. Initially, it splits a set of instances, D into several
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Algorithm 1 CART Algorithm

Input: A dataset, D

Output: A decision tree, DT

Method:

1: Compute the Gini Index of D

2: for feature, f=1 to F do

3: Calculate Gini Index for attribute, Af all values

4: Store information of attribute, Af

5: Calculate gini gain of attribute, A

6: end for

7: DT = set best gini gain attribute, A as node

8: DT = add attribute values as edge

9: Repeat until splitting data belong to the same class

subsets (D1, D2, ..., Dn) depending on the number of features F . Then, it

constructs multiple models by using a learning scheme based on the number of

subsets and classifies samples in each subset [43, 20]. The learning scheme that

is used to build RF is presented in Algorithm 1. In RF, there is an association

between the accuracy and the number of generated models. In other words,

the number of models is directly proportional to accuracy. In machine learning,

overfitting is one of the crucial problems and it may abate the classifier accuracy

[43]. RF classifier is among the classifiers that are least prone to this problem.

As it considers the vote of every model, it is less likely to overfit the model and

usually gain greater accuracy than a single classifier [53, 43]. The number of

trees in the forest, 100 is used with maximum depth to achieve better accuracy.

4.6. Bagging

Bagging is also called Bootstrap Aggregation, which is an ensemble approach

employed in statistical classification and regression to boost the performance

of ML algorithms [1]. It combines the prediction of different equal-weighted

models and classifies a new instance using different voting technique[20]. The
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bagging technique requires a set of instances D of size N and several iterations,

I to build the classifier model as its parameters. It generates new subsets,

({D1, D2, ..., Dn}) by sampling the original dataset, D with replacement until

the iterations number. Then, it uses each sub-set and learning scheme illustrated

in Algorithm 1 to derive classifier models. To classify a new instance xnew, it

combines the output of each model and uses majority voting to combine the

prediction results [1]. In the ensemble, the number of base estimators, 10 used

with the CART algorithm.

4.7. AdaBoost

Adaptive Boosting (AdaBoost) is a popular ML meta-algorithm, which com-

bines a series of classifiers weighted votes to classify instances [1, 52]. It builds

a strong classifier by combining a set of weak classifiers [54]. Initially, it assigns

an equal weight, 1/d to each training data point, xi ∈ D. Then, it produces

a group of subsets, ({D1, D2, ..., Dn}) by sampling D with replacement based

on instance weight until the iterations number, I. Each generated dataset, Di

derives a model, Mi, and computes the error of the model by adding the weights

of all instances in Di. Eq. 14 shows the error calculation function of a model

where err(xj) will be 1 when xj is misclassified, and 0 otherwise [55].

error(Mi) =

d∑
j=1

wj ∗ err(xj) (14)

If the error of a model exceeds 0.5, we will regenerate Di and derive a new

Mi. We will update the weight of an instance as if the weight of classified

instances is abated and misclassified instances are enlarged [51, 52, 53]. To

classify a new instance, it combines the votes and weights of each classifier.

The base estimator CART is used with maximum depth and 100 estimators to

execute AdaBoost for best classification results.

4.8. Proposed Ensemble Method

An Ensemble method is a technique to construct a model by incorporating

several classifiers to achieve better performance. The proposed clustering-based
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ensemble technique CluSem that is used to classify motor imagery hand move-

ment will discuss in this section. Initially, the proposed method takes the train-

ing EEG brain data D= {x1, ..., xN} from NE neurons/ electrodes. It then

divides the dataset, D into NE clusters based on the label of the electrodes.

All clustered datasets {D1, D2, ..., DNE} represent individual electrodes as we

divide dataset, D based on it. Again, each of these clustered datasets divides

into C clusters based on the attributes of each subset. Finally, we get NE

datasets after the first clustering and the end of the second clustering, we get

C subsets {D1, D2, ..., DC} for each subsets {D1, D2, ..., DNE}.

After generating the subsets, we construct C number of decision trees DT1,

DT2, ..., DTC for mth cluster using decision tree induction algorithm (CART).

The CART algorithm is explained comprehensively in section 4.4. We compute

the error rate of DT1, DT2, ..., DTC on dataset, Dn and find the decision tree,

minDT ∈ DTm with the minimum error rate minerror. Then, this tree DTm is

considered to construct the final ensemble of trees DT ∗ and models M∗. In the

last step of this CluSem method, each MI-EEG data point, xnew classifies with

M∗ based on the position of the electrodes and deliberate the majority vote as

prediction among the classification results of Mn ∈ M∗. Here, the data points

are coming from different electrodes and select the model dynamically based on

the position of the electrodes.

Before incorporating the CART as a learning scheme in CluSem, we had ex-

amined the performance and time complexity by using other popular methods in

CluSem. The methods which were tested besides CART are ANN, SVM, Näıve

Bayes, RF, Bagging, and AdaBoost. The classification performance and execu-

tion time of this experiment are illustrated in Table 3. The primary reason to

do this experiment is to find the best parameter for our proposed method which

provides good results with less computational time. As we employ this proposed

method in our application to classify real-time data, we need a method that can

be able to give good results with less execution time. To get a better user ex-

perience, we have to make our application fast and accurate. For this, we used

CART in our proposed method which is simpler than other algorithms—they
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are evaluated in Table 3. The process of classifying motor imagery tasks is illus-

trated in Fig.5. Also, the proposed clustering-based ensemble method CluSem

is summarized in Algorithm 2.

Figure 5: The process of CluSem method to classify real-time motor imagery EEG data.

In BCI, real-time MI related EEG signal classification is a challenging task.

Most often, the signals are biased with artifacts and noise due to the low con-

ductivity of the electrodes with the scalp [1, 24]. Different areas of the brain

are responsible for the individual task and each electrode on the scalp provides

different signals [20]. Enhancing the performance of EEG signal classification
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Algorithm 2 Proposed Clustering-based Ensemble Method

Input: MI data D, Number of neurons NE, Data Points N & CART

Output: Ensemble Model, M∗

Method:

1: Clustering Dataset:

2: for n=1 to NE do

3: for i=x1, ..., xN do

4: if i.neuronid mod NE = n− 1 then

5: Dn = Dn ∪ i

6: end if

7: end for

8: end for

9: for n=1 to NE do

10: minerror, minDT ;

11: Cluster attributes of Dn into C clusters;

12: for m=1 to C do

13: Cluster dataset Dm with mth attributes;

14: Build DTm with Dm;

15: Calculate error(DTm) on Dn;

16: if error(DTm) ≤ minerror then

17: minerror = error(DTm);

18: minDT = DTm;

19: end if

20: end for

21: DT ∗ = DT ∗ ∪minDT ;

22: end for

Predict every, xnew employing DT ∗ based on neurons

Every DTn ∈ DT ∗ predict xnew and return majority voting;
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in real-time is a demanding task because of the high dimensionality of the input

data and dynamic behavior of the electrodes [54].

It is a challenging task to build a good model employing single classifiers

like ANN, SVM, näıve Bayes, or Decision Tree for high-dimensional input data

[20, 21]. On the other hand, ensemble learning methodologies are employing

widely to tackle this issue and demonstrated promising results. However, the

existing ensemble methods generate subsets by sampling the original dataset

with replacement technique [1, 24]. By applying this technique, the same in-

stance can be repeated several times. The idea behind the clustering approach

before the classification that is proposed in this study is to overcome this prob-

lem and to classify MI related EEG signals in real-time. It clusters the dataset

based on the position of the electrodes, hence each cluster represents dissimi-

lar information. It also selects the model dynamically based on the electrode

locations to classify real-time EEG data. In this study, we have used several

classifiers that are widely used in this field to investigate the effectiveness of our

proposed method [1, 24, 28]. To do this, we used some single classifiers: ANN,

SVM, NB Classifier, CART, and popular ensemble classifiers: RF, Bagging,

AdaBoost which are employed in recent days [14, 1, 2, 28, 7, 56].

5. Experiments

In this section, we present the experimental environment, results of the pro-

posed clustering-based ensemble method, and our developed brain game that is

controlled by real-time motor imagery hand movements data.

5.1. Experimental Setup

In this study, the experiments were conducted via a device with an Intel

Core-i5 (2.60 GHz) processor, and 8 GB of RAM. We implement the proposed

method in Python programming language (version 3.7) and used the scikit-learn

(version 0.21.2) as a machine learning library. We compare the performance of

the proposed method with several popular machine learning algorithms using

classification accuracy, precision, recall, and F-score.
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The accuracy is measured by Eq. 15 where assess(xi) = 1 when xi is

correctly classified or assess(xi) = 0 when xi is misclassified [53]. The precision,

recall, and F-score are calculated using Eq. 16 to 18, respectively [51]. We also

represent decision boundaries using the area under the ROC curve and AUC

score. In the ROC curve, true positive rate (TPR) is plotted against false

positive rate (FPR). The calculations are presented in Eq. 19 and 20. In au-

ROC curve, the lowest threshold is considered through the y = x line where

correctly classified data points are represented by 1 and misclassified instances

are represented as 0 [43].

Accuracy =

∑|X|
i=1 assess(xi)

|X|
, xi ∈ X (15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F − score =
2× precision× recall
precision+ recall

(18)

TPR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)

Here, TP, TN, FP, and FN indicate the number of positive samples correctly

classified, negative samples correctly classified, negative samples incorrectly clas-

sified, and positive samples incorrectly classified respectively [53, 14].

5.2. Results

In the first step, we evaluate the performances of CluSem with different

learning schemes—they are some popular machine learning classifiers—used in
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this experiment. We mainly scrutinize the CluSem performance and the execu-

tion time needed to test the model with different parameters. The result of this

comparison is presented in Table 3 which is examined by two datasets—binary-

class and ternary-class datasets—with algorithms: ANN, SVM, NB Classifier,

RF, Bagging, AdaBoost, and CART. Among these algorithms, CART needs

less computational time and provides better accuracy in both datasets. RF,

Bagging, and AdaBoost also provide good results but failed to execute with less

execution time.

Table 3: The results reported using different classifiers as a learning scheme of the CluSem

model using binary-class and ternary-class datasets.

Different

Learning

Schemes

in CluSem

Binary-class Dataset Ternary-class Dataset

Accuracy Execution Accuracy Execution

(%) Time (%) Time

(minutes) (minutes)

ANN 88 1.7 71 2.8

SVM 82 .8 75 1.5

NB Classifier 68 0.6 80 1.3

Random Forest 99 2.0 82 2.5

Bagging 94 1.7 75 2.2

AdaBoost 99 2.1 80 2.8

CART 99 0.5 79 0.9

In the second step, we evaluate the performances of CluSem against existing

methods that are widely used for this task namely, ANN, SVM, Näıve Bayes,

CART, RF, Bagging, and AdaBoost Classifiers on training sets of motor im-

agery EEG datasets. The results for this comparison is presented in Table 4.

The results in this table demonstrate that the proposed clustering-based ensem-

ble algorithm significantly outperforms the existing classifiers on a binary-class

motor imagery EEG dataset. The proposed method performed superior and

reaches 99.0% in terms of accuracy for the binary-class dataset. In this dataset,

single classifiers are failed to achieve more than 85.0% accuracy where existing

ensemble approaches can achieve up to 91.0% accuracy. As shown in this table,

CluSem can achieve over 8.0% better performance compared to other ensemble

classifiers used for this task. The decision boundaries of the proposed method
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compared to employed classifiers for this dataset is shown in Fig. 6.

Table 4: The results reported using the CluSem model compare to popular classifiers on

binary-class EEG dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 84 0.84 0.86 0.84

SVM 78 0.77 0.80 0.79

NB Classifier 60 0.60 0.68 0.62

CART 85 0.87 0.85 0.85

Random Forest 90 0.90 0.91 0.90

Bagging 82 0.82 0.82 0.82

AdaBoost 91 0.91 0.91 0.91

Proposed EM 99 0.99 0.98 0.97

Figure 6: ROC and AUC analysis of CluSem method compared to popular classifiers on

binary-class motor imagery EEG dataset.

Moreover, as shown in Table 5, the proposed clustering-based ensemble

classifier also outperforms some popular machine learning algorithms on the

ternary-class dataset. In the ternary-class dataset, left and right-hand move-

ments classification is challenging to predict because both tasks are engendered

from the motor cortex, and samples are closely associated. Similarly, our pro-

posed method achieved better than the existing four single classifiers and three
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ensemble methods. As shown in this Table, CluSem achieves 79.0% prediction

accuracy which is 17.0% better than those reported using other classifiers. Fig.

7 illustrates the decision boundaries of the classifiers via ROC analysis and AUC

scores for the ternary-class dataset.

Table 5: The results reported using the CluSem model compare to popular classifiers on the

ternary-class EEG dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 53 0.53 0.55 0.54

SVM 57 0.55 0.57 0.56

NB Classifier 60 0.60 0.64 0.59

CART 59 0.60 0.59 0.58

Random Forest 62 0.62 0.64 0.61

Bagging 57 0.57 0.59 0.57

AdaBoost 61 0.62 0.63 0.59

Proposed EM 79 0.79 0.80 0.79

Figure 7: ROC and AUC analysis of CluSem method compared to popular classifiers on

ternary-class motor imagery EEG dataset.

Besides, we used the EEG eye state dataset to experience our proposed

clustering-based ensemble method. For this dataset, CluSem also achieves sig-

nificant improvements over other classifiers. It achieves 90.0% accuracy on av-
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erage while decision tree CART achieves 83.0% accuracy, and existing ensemble

approaches achieve up to 89.0% accuracy. The comparison of accuracy, preci-

sion, recall, and F-score analysis using 10-fold cross-validation for the EEG eye

state dataset is presented in Table 6. Fig. 8 illustrates the ROC analysis and

AUC scores of the proposed method for the EEG eye state dataset.

Table 6: The results reported using the CluSem model compare to popular classifiers on EEG

eye state dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 44 0.43 0.44 0.43

SVM 64 0.63 0.63 0.63

NB Classifier 54 0.55 0.55 0.42

CART 83 0.84 0.84 0.84

Random Forest 88 0.89 0.90 0.90

Bagging 89 0.90 0.90 0.90

AdaBoost 75 0.75 0.75 0.75

Proposed EM 90 0.90 0.91 0.90

Figure 8: ROC and AUC analysis of CluSem method compared to popular classifiers on EEG

eye state dataset.

Table 7 shows a comparison of our proposed work with the other state-of-

the-art methods. To make a fair comparison, all the methods were implemented
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Table 7: 10 Ö 10-fold cross-validation results of the different methods on the EEG eye state

dataset.

Methods Accuracy Recall Precision F-score

(%)

CSP 84.20 0.832 0.855 0.838

DFBCSP [57] 79.99 0.759 0.830 0.778

I-DFBCSP [25] 83.38 0.796 0.860 0.814

OPTICAL [58] 76.07 0.698 0.782 0.730

OPTICAL+ [59] 82.72 0.806 0.838 0.809

SS-MEMDBF [60] 89.36 0.891 0.889 0.884

SFTOFSRC [40] 73.03 0.769 0.708 0.730

Proposed EM 90.00 0.900 0.910 0.900

and evaluated using 10 Ö 10-fold cross-validation scheme on the EEG eye state

dataset. It can be noted that the proposed method outperformed all the other

state-of-the art methods in terms of accuracy, recall, precision and F-score. Our

proposed method achieved an improvement in accuracy of 5.80% compared to

the conventional common spatial pattern (CSP) approach and an improvement

in accuracy of 7.28% compared to the recently proposed OPTICAL+ predictor.

The SS-MEMDBF method also performed well as it has the 2nd best perfor-

mance. The OPTICAL+ predictor did not perform well, which might be due to

low number of training samples as the OPTICAL+ predictor uses deep learning

technique.

As shown in this Section, CluSem can outperform the most popular clas-

sification techniques that are used for this task. It can achieve high accuracy

and AUC scores on average on three EEG datasets. CluSem delivers an en-

hancement between 10% and 20% accuracy compared to individual classifiers.

It also achieves approximately 5% to 15% better prediction accuracy compared

to existing ensemble approaches. Although the proposed clustering-based en-

semble method outperforms other existing classifiers, there are limitations to

be considered. It is possible that the input signal would be influenced by ar-

tifacts and noise due to the short conductivity of the neurons with the scalp.

In such circumstances, CluSem or any other classifiers that are investigated in
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this study will not be able to correctly classify data points in real-time and the

performance of the classifier is abated.

5.3. Developing Brain Game

We used our proposed clustering-based ensemble model (CluSem) and Java-

Swing technology to develop our targeted application system called CluGame.

We also used the Emotiv community SDK in our Java program to acquire live

brain signals. This game takes the average band power of different frequency

bands from F3, FC5, FC6, and F4 electrodes as input commands. Then these

commands are classified by CluSem based on the position of the electrodes and

generate actions as the prediction, accordingly. The input commands are coming

from F3, FC5, FC6, F4 electrodes, and select the model dynamically based on

the position of the electrodes.

In CluGame, we present several actions via animated balls according to

the prediction accuracy of different classes. The real brain data classification

through the developed model and prediction tabulation via animated balls in

real-time is controlled via threads. The final prediction is taken from the dy-

namic number of instances votes to control the game more precisely. Here, we

have developed two versions of this game: CluGame-2 and CluGame-3 for bi-

nary as well as ternary actions of motor imagery task without any necessity

of conventional input devices, respectively. It also increased the classification

accuracy of real-time EEG signals of motor imagery tasks.

A sample view of CluGame is shown in Fig. 9. The animated balls are

presenting the movement and steady accordingly. In this figure, the balls are in

two labels: movement and steady. When the game predicts the input as steady,

the balls will be steady and label as steady. On the other hand, the animated

balls will be in a movement state when it predicts the input as left- or right-

hand movements. If there is any error or failure to predict or the headset is

not working, CluGame will provide proper messages. In real life, this game can

be used for rehabilitation as well as upgrading user well-being. The user can

exercise her/ his concentration to recover from attention deficiency and boost
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her/ his attention via playing this brain game. It can also simply be used for

gaming and entertainment. The source code of brain game is also available via

open repository at https://github.com/MdOchiuddinMiah/MI-BCI_ML/tree/

master/Brain-Game.

Figure 9: Classify real-time motor imagery tasks via developed CluGame, presenting move-

ments and steady correspondingly.

6. Conclusion and Future Work

In this study, we proposed a new tool called CluSem to predict motor imagery

tasks from multi-channel EEG Data. To build this model, we have used Emotiv

EPOC+ EEG neuroheadset after analyzing several BMI devices like Emotiv

EPOC+, Muse Headband, Aurora Dream, and MindWave. To obtain MI-EEG

brain signals, we built an application program manipulating Emotiv SDK with

Java technology.

We have investigated the performance of CluSem compared to the most pop-

ular classifiers used for this task such as ANN, SVM, Näıve Bayes, CART, RF,

Bagging, and AdaBoost. Our results demonstrate that CluSem can significantly

outperform previously used classifiers for this task. It is also able to enhance

the prediction performance between 5% and 15% over the previously proposed
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ensemble classifiers to solve this problem.

Besides, we use CluSem to develop a game called CluGame that is capable

of controlling the movements of the balls utilizing the real-time MI-EEG brain

signals. It offers the user to enhance the quality of attention, which boosts

productivity. It also assists people who are physically impaired or disabled and

can potentially be used for human functionality enhancement. We designed the

game to be a single-player game and to recognize three actions. In the future,

more actions and more players can be added to make the game more advanced

and challenging. The finding of this research can also be applied to manipulate

and enhance the control as well as movements of robots. It also brings new

potentials in the health and rehabilitation industry. CluSem, CluGame, our

generated benchmark datasets, and all associated codes are publicly available

at https://github.com/MdOchiuddinMiah/MI-BCI_ML.
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