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A B S T R A C T   

The information of a cell is primarily contained in deoxyribonucleic acid (DNA). There is a flow of DNA infor-
mation to protein sequences via ribonucleic acids (RNA) through transcription and translation. These entities are 
vital for the genetic process. Recent epigenetics developments also show the importance of the genetic material 
and knowledge of their attributes and functions. However, the growth in these entities’ available features or 
functionalities is still slow due to the time-consuming and expensive in vitro experimental methods. In this paper, 
we have proposed an ensemble classification algorithm called SubFeat to predict biological entities’ function-
alities from different types of datasets. Our model uses a feature subspace-based novel ensemble method. It 
divides the feature space into sub-spaces, which are then passed to learn individual classifier models. The 
ensemble is built on these base classifiers that use a weighted majority voting mechanism. SubFeat tested on four 
datasets comprising two DNA, one RNA, and one protein dataset, and it outperformed all the existing single 
classifiers and the ensemble classifiers. SubFeat is made available as a Python-based tool. We have made the 
package SubFeat available online along with a user manual. It is freely accessible from here: https://github. 
com/fazlulhaquejony/SubFeat.   

1. Introduction 

With the advent of modern sequencing machines and techniques, 
there had been tremendous growth in known sequences. DNA, RNA, and 
proteins are of primary interest. They are involved in all information 
flow and even in epigenetics. A huge number of sequences and their 
attributes and properties are vital to understand cell organisms. Among 
these are secondary structure (Singh et al., 2019), gene-coding markers 
(Amin et al., 2019; Rahman et al., 2019b), anti-cancer properties 
(Gabernet et al., 2019), editing (Choyon et al., 2020), binding(Zaman 
et al., 2017; Chowdhury et al., 2017), post-translational modifications 
(Islam et al., 2018; Ahmad et al., 2020; Rashid et al., 2020), sub-cellular 
localization (Shatabda et al., 2017), methylation (Bell et al., 2019), and 
many other important process and functions that regulates almost all the 
processes within the cell organism. However, these techniques are 
time-consuming and expensive. 

There has been growth in developing computational and knowledge- 
based methods to predict the sequences’ attributes and functions (Liu, 

2019; Chen et al., 2020; Muhammod et al., 2019; Kaushik et al., 2020; 
Xu et al., 2020). One of the key advantages of the knowledge based 
methods is that they often provide further insights to the patterns that 
are discoverable using fast computational facilities available and even 
with relatively small amount of data knowledge transfers and deep 
learning have also been possible from one problem to another (Namu-
duri et al., 2019; Zhou et al., 2020; Amin et al., 2019; Luo et al., 2019). 
One of the common approaches in the literature is to formulate the 
prediction task as a supervised learning problem: binary, multi-class, 
multi-label (Uddin et al., 2018; Taherzadeh et al., 2016). A number of 
successful classifiers have been used, single classifiers like support 
vector machines (SVM) (Uddin et al., 2018), K-nearest neighbors (KNN) 
(Ning et al., 2019), Decision Trees (DT) (Turan and Sehirli, 2017), Naive 
Bayes (NB) (Adilina et al., 2019), logistic regression (LR) (Ntranos et al., 
2019); ensemble methods like AdaBoost (Rayhan et al., 2017), Random 
Forest (Li et al., 2018) have been applied to solve these problems. 
However, no single method seems to be performing well over other 
methods, and there is scope to develop new techniques. 
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One of the essential factors in building a successful machine learning- 
based method is the dataset’s representation. In this case, it’s how the 
sequences of DNA, RNA, and proteins are converted to a vector repre-
sentation. Usually, ensemble methods are found to provide superior 
performances, provided that they utilize the underlying feature space 
properly. AdaBoost iteratively learns using weak classifiers. However, 
the algorithm does not exploit or consider the underlying feature space. 
On the other hand, Random Forest unexpectedly samples the features. 
From the point of view of the biological domain, it has been often seen 
that in many cases, the components are grouped into several sub-groups 
based on their respective generating techniques and sometimes the 
subgroups to share essential knowledge. Our main idea in this work is to 
utilize this property of the feature space. 

In this paper, we present an ensemble method called SubFeat. SubFeat 
divides the full feature space into overlapping or non-overlapping sub- 
spaces and learns base classifiers (without ensemble classifier) or their 
mix on the sub-spaces, and the ensemble is created using a voting 
technique. It is much similar to Random Forest or Ensemble Voting 
process in how it uses the feature space and the voting mechanism. 
However, the approach taken to divide the subspace is unique here. We 
have tested the problem to four problems related to DNA, RNA, and 
proteins: DNA-binding proteins prediction using protein sequences, A- 
to-I editing prediction of RNA sequences, and promoter, and recombi-
nation hotspot prediction of DNA sequences. The datasets used in work 
are all standard benchmark datasets. SubFeat is a comprehensive 
Python-based tool that works with a limited features group. It provides 
the overlapping feature option that users can customize for their 
research purposes. It merely concentrates on overlapping feature hy-
pothesis rather than feature variety of feature generation; the model 
outperformed after the rigorous experiment. SubFeat chooses two well- 
established feature groups: ‘k-mer’ and the ‘gapped k-mer’. The SubFeat 
tool extended some of the functionality of the PyFeat tool (Muhammod 
et al., 2019). But the PyFeat tool predominantly focuses on numerical 
feature generation based on biological traits, it also provides classifi-
cation tasks. ‘Gapped k-mer’ and ‘k-mer’ are well-known for the core 
feature selection as we have concentrated more on sub-feature base 
methods. We merely focus on core feature selection rather than its 
variation and biological attributes. We observed our experiment after 
full features space also did not perform well; on the other hand, when we 
divided the parts into subspaces and randomly selected the features, the 
performance enhances drastically (Table 4–7). 

The experimental results show the superiority of the proposed 
method, SubFeat over several single classifiers and ensembles. We have 
made the methodology available as a Python package freely available 
and usable from: https://github.com/fazlulhaquejony/SubFeat. 

2. Materials and methods 

The basic idea of the ensemble method, SubFeat is given in Fig. 1. In 
this paper, we have divided the feature space into three sub-spaces. Each 
was then trained using a base classifier, and the final prediction is made 
based on the weighted majority voting of the sub-classifiers. The 
framework can utilize the possible overlap or non-overlap among the 
feature spaces, which are given in Figs. 2 and 3 . 

In this section, we provide the details of our methods and materials. 
The section starts with a description of the datasets and the problems 
that were selected for experiments. A very brief literature review from 
the computational point of view is also provided for each problem. After 
that, we describe our feature representation for each of the problems. 
The ensemble is presented next with the choice of the algorithms in 
brief. We also describe the performance evaluation techniques used for 
the work. 

2.1. Datasets 

For this work, we have considered four problems: prediction of DNA 

recombination hotspots, prediction of promoter sequences in DNA, RNA 
A-to-I editing prediction, and prognosis of DNA binding proteins. Thus 
we have incorporated three types of sequences: DNA, RNA, and proteins. 
This section provides a description of the dataset collection and a brief 
literature review of the state-of-the-art methods of each of the problems. 
In supervised machine learning, a dataset is generally composed of 
positive and negative samples: 

S = S+ ∪ S− (1)  

Here, S+ denotes the set of positive instances, and S− denotes the set of 
negative examples. We have selected an almost balanced dataset of 
examples where positive and negative classes are approximately equally 
distributed in our experiments. We have reduced the redundant 
sequence using the CD-HIT tool (Fu et al., 2012). We used four 
well-established datasets in our experiments, whereas two DNA, an 
RNA, and a protein dataset. A summary of the datasets used in this paper 
is given in Table 1. 

2.1.1. Recombination hotspot 
Hotspots are regions in the genome where meiotic recombination 

rates are much higher compared to the cold spots. DNA binding arrays 
are used in vitro to find recombination hot spots (Baudat et al., 2010; 
Jani et al., 2018). The dataset that we consider in this paper was orig-
inally curated by Jiang et al. (2007a). Recently, a good number of ma-
chine learning-based algorithms and methods (Al Maruf and Shatabda, 
2019; Jani et al., 2018) as well as ensemble-based methods (Liu et al., 
2017) are being proposed in the literature to solve the problem 
computationally. By using DNA microarray at the single-gene resolu-
tion, the relative recombination rates for the yeast Saccharomyces cer-
evisiae loci have been estimated by Rimmer et al. (2014). The 
hybridization ratio of P2/P1 estimated the relative strength of recom-
bination. The ratio of hybridization to a DSB-enriched probe (P2) to a 

Fig. 1. Block diagram for ensemble classifier.  
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total genomics probe (P1) was measured to estimate the DSBs formation 
adjacent to each ORF. They take the median value as the relative 
recombination rate of each sequence, in their article. For each of the 
6200 genes, the experiments were repeated seven times. Here the 
sequence was excluded for an array value that was missing. Thus a total 
of 5266 sequences were culled. For relative hybridization ratio ≥1.5 are 
defined as hotspots, and relative hybridization ratio <0.82 are defined 
as coldspots of those sequences. By this procedure, at last, 490 hotspots 
and 591 coldspots were obtained from the training datasets (Jiang et al., 
2007a). In this dataset, there were 478 positive samples and 572 nega-
tive samples after removing redundancy using CD-HIT tool (Fu et al., 
2012). 

2.1.2. σ70 promoters 
Promoters are regions in the DNA where RNA polymerase binds itself 

initiating the transcription process. The RNA polymerase combines itself 
with different σ factors, which are differentiated according to their nu-
clear weights. σ70 factors are primary housekeeping factors and hence 
have potential importance in gene transcription. The dataset that we 
have selected here for promoter sequence prediction is taken from (Lin 
et al., 2017). Originally the σ70 dataset was curated from the RegulonDB 
database (Santos-Zavaleta et al., 2019). In recent years, a large number 
of methods have been proposed to solve the promoter detection problem 
using this dataset (Lin et al., 2017; Liu et al., 2018; Rahman et al., 
2019b,a). In this dataset, the promoter sequences are all DNA short se-
quences, and there are 741 positive and 1400 negative sequences. 

2.1.3. RNA editing 
Adenosine to inosine (A-to-I) editing is one of the most common and 

important RNA modifications (Peng et al., 2018) that changes the gene 
templates and thus affects the genetic variation in species. RNA–DNA 
difference (RDD) methods are generally employed to detect editing or 
modifications (Peng et al., 2012). Many machine learning-based 
methods are employed to approach the problem in recent years 
(Choyon et al., 2020; Ahmad and Shatabda, 2019; Chen et al., 2016). 
The dataset that we are using in this work was originally proposed in PAI 
(Chen et al., 2016). The proposed method was built based on St Laurent 
et al. (2013). They obtained a training dataset including 127 A-to-I 
editing sites containing sequences and 127 non-A-to-I editing sites 
containing sequences by sequencing the DNAs and RNAs of the 
wild-type D. melanogaster and RNAs of the ADAR-deficient Drosophila 
melanogaster by using a single molecular sequencing method. A bench-
mark dataset including 125 A-to-I editing sites containing sequences and 
119 non-A-to-I editing sites containing sequences was obtained, after 
removing the redundant sample dataset were obtained by removing the 
redundant dataset. After preliminary trials, a length of the sequence in 
the benchmark dataset 51-nt was got, with that A. In the center, it can be 
edited to inosine, and all the sequence of the dataset is available at http: 
//lin.uestc.edu.cn/server/PAI. They built an independent dataset to 
verify the power of the proposed method; Using CD-HIT (Fu et al., 
2012), they obtained 300 A-to-I editing site containing sequences. by 
removing more than 75% sequence similarity and harvesting the A-to-I 
editing site containing sequences of D. melanogaster from Yu and his 

Fig. 2. Block diagram for non-overlap ensemble classifier.  

Fig. 3. Block diagram for overlap ensemble classifier.  

Table 1 
Summary of the different datasets used to test the performance of SubFeat.  

Dataset Sequence 
type 

Positive 
instances 

Negative 
instances 

Total 

Recombination 
hotspot 

DNA 478 572 1050 

σ70 promoters  DNA 741 1400 2141 

RNA editing RNA 125 119 244 
DNA binding 

proteins 
Protein 525 550 1075  
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colleagues’ work (Chen et al., 2016). It contains 300 length RNA se-
quences with 125 positive and 119 negative sequences. These sequences 
are also 51-nt long and are available at http://lin.uestc.edu.cn/s 
erver/PAI. 

2.1.4. DNA binding proteins 
DNA binding proteins bind to specific regions of DNA and affect gene 

regulation. In this paper, we have used a very well-used benchmark 
dataset for DNA binding proteins with 525 positive and 550 negative 
samples. This dataset was originally proposed in Liu et al. (2014) and 
has been used extensively in the literature (Chowdhury et al., 2017; 
Zaman et al., 2017; Rahman et al., 2018; Liu et al., 2014; Wei et al., 
2017). 

2.2. Feature representation 

After the data collection, an essential step in machine learning-based 
methods is to convert the problem instances to a vector representation. 
Generally, the feature vector is a collection of properties: 

F = {f1, f2,…, fn} (2) 

Different feature representation techniques have been used in the 
literature that includes: structural information (Islam et al., 2018), 
evolution properties (Uddin et al., 2018; Shatabda et al., 2017). How-
ever, in recent works, it has been shown that sequence-based features 
through elementary and simple to generate are most effective if selected 
or designed properly (Muhammod et al., 2019; Rahman et al., 2018). 
Moreover, our main objective in this work was to provide a generic 
framework for all three types of sequences and to reduce the complexity 
in the feature generation step. That is the reason that we have selected to 
use sequence-based features only. However, the framework still sup-
ports other features based on derived or secondary properties and usable 
wherever necessary and useful. 

For the sake of simplicity in the experiments, we have selected a 
similar group of features for all three types of sequences: Monomer 
composition, di-mer composition, trimer composition, 1-gapped di- 
mono composition, and 1-gapped mono-di compositions. However, 
based on the alphabet size, the number of features extracted is different. 
We have used PyFeat tool (Muhammod et al., 2019) for feature extrac-
tion. Considering no overlaps, these features are then divided into three 
groups. The details of the features are given in Tables 2 and 3 . 

2.3. SubFeat algorithm 

The pseudo-code of SubFeat algorithm is given in Algorithm 1. It 
follows the same procedure as described in Figs. 1–3 . However, given a 
set of instances in the training set, X and the labels associated with the y, 
the algorithm first extracts the feature set, F. From, F, next it populates a 
feature subspace set, Xs. This set contains all the subspaces. Which is 
controlled by two parameters, np denoting the number of partitions in 
the feature space, and overlap is a Boolean indicating whether there will 
be overlaps among the subspaces or not. In practice, np and overlap could 
be hyper-parameters and needs to be trained based on a specific problem 
in concern. After that, iteratively, the hypothesis set, ℍ and associated 
weights, W are learned based on the classifier type selected. 

Algorithm 1. SubFeat(X,y,np = 3,overlap = false)

For prediction, the hypothesis set, ℍ and weights set W are used to 
ensemble the predictions of the individual base classifiers in a weighted 
majority fashion. The parameter mix allows the mix of the models 
selected. 

2.4. Performance evaluation 

In this paper, we have divided the feature space 2–3 mers and 1–3 
gaps based on categories, After that we select some feature of that 
category randomly (Tables 2 and 3). We have used 10-fold cross- 
validation for the sampling of the datasets. The dataset is divided into 
ten different balanced subsets retaining the balance ratio, and then in 
each iteration, one subset is used as a test, and the rest are taken as a 
train set. This process continued ten times. However, to tackle the 
randomness effect, ten runs were performed, and an average of them are 
reported only. 

We have used several evaluation metrics: Accuracy (Acc), Precision, 
F1 Score, MCC, Sensitivity (Sn), Specificity (Spc), and Area under the 
curve (AUC). They are presented here in brief. Please note that in the 
following equations, TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative. True positive means positive 
instances that were correctly classified by the classifier. True negative 
means negative instances that were correctly classified by the classifier. 
Similarly, false positive and false negative means negative instances that 
are incorrectly classified as positive by the classifier and positive ex-
amples incorrectly classified as unfavorable by the classifier.  

(3) Accuracy (Acc) gives a percentage result of correctly classified 
instances in between total number of instances. 

Acc =
TP + TN

TP + FP + FN + TN
(3)    

(4) Sensitivity (Sn) gives a percentage result of correctly classified 
positive instances in between total number of positive instances. 

Sn =
TP

TP + FN
(4)   

Table 2 
Details of feature subspacing for protein dataset.  

Feature subspace Feature type No. of features 

F1  MonoMer composition 20  
DiMer composition 400  
TriMer composition 8000 

F2  1-Gapped di-mono composition 8000 
F3  1-Gapped mono-di composition 8000  

Table 3 
Details of feature subspacing for DNA and RNA dataset.  

Feature subspace Feature type No. of features 

F1  MonoMer composition 4  
DiMer composition 16  
TriMer composition 64 

F2  1-Gapped di-mono composition 64 
F3  1-Gapped mono-di composition 64  
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(5) Specificity (Spc) gives a percentage result of correctly classified 
negative instances in between total number of negative instances: 

Spc =
TN

TN + FP
(5)   

(6) Matthew’s Correlation Coefficient (MCC) returns value be-
tween +1 to − 1. The 0 represent a random classifier. The more 
the value is closer to +1, the better the classifier, similarly values 
towards − 1 represent bad classifier: 

MCC =
(TP × TN) − (FN × FP)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

√ (6)    

(7) F1 score is the weighted average of precision and Recall. F1-score 
works with both false positive and false negative. Especially in 
the term of an uneven class distribution, this metric is usually 
more useful than accuracy: 

F1 − Score =
2 × precision × recall

precision + recall
(7)  

Precision gives a result of correctly classified positive instances in 
between total number of positive instances: 

Precision =
TP

TP + FP
(8)  

Recall is same as sensitivity and it is the ratio of correctly predicted 
true positive and false positive (all positive observations). It works on 
binary classification. 

Recall =
TP

TP + FN
(9)    

(8) Area under the receiver operating characteristic curve (AUC) 
is a performance measurement for classification problems at 
various thresholds. AUC is the measure or degree of separability 
while ROC represents a probability curve. 

3. Results and discussion 

In this section, we present all the experimental results achieved in 
this study and relevant analysis. All the experiments were done in a 
Computing Machine provided by Bioinformatics Research Lab, United 
International University. The machine was equipped with 8-core pro-
cessors, each core having an Intel Core Processor (i7-7700) with 3.6 GHz 
speed and 32 GB of memory. All experiments in this paper are imple-
mented in Python programming language (Version 3.6) and using scikit- 
learn machine learning library (Pedregosa et al., 2011), and each of the 
experiments was run ten times, and the average of the results is reported. 
In all the tables, boldfaced values mean the best bargains. 

3.1. Classification algorithms 

In this section, we briefly describe the single-based classifiers and the 
ensemble. In this section, we briefly describe the single-based classifiers 
and the ensembles that were used for the experiments and for perfor-
mance comparisons. Four single classifiers were used: support vector 
machines (SVM), Naive Bayes (NB), Decision Tree (DT), and logistic 
regression (LR). Support vector machine (SVM) (Cortes and Vapnik, 
1995) selects vectors that can represent the decision boundary best to 
separate the different classes. In our experiments, we have used a linear 
kernel-based SVM. Logistic regression (LR) (Hosmer et al., 2013) divides 
the sample space using linear hyper-planes. We use L2 regularization 

and regularization parameters set to 1.0 for the experiments with iter-
ations to learn the parameters to 100. Decision Tree (Ruggieri, 2002) is 
based on selecting features based on a measurement that can discrimi-
nate the instances best according to criteria. We used gini index as the 
selection criteria, and min samples to split were set 2. Gaussian Naive 
Bayesian (NB) (Jiang et al., 2007b) is supervised learning based on 
probabilities of the features given the class labels and their likelihoods. 

In addition to these single classifiers, we have used three ensemble 
algorithms for experiments: AdaBoost, Random Forest, and Ensemble 
Voting. Each of these algorithms is state-of-the-art ensemble methods 
that are used in the bioinformatics domain and as well as in other areas 
(Rayhan et al., 2017; Li et al., 2018). 

3.2. Experimental results 

We present the results obtained by running experiments on four of 
the datasets. Tables 4–7  shows the result of using single classification, 
feature sub spacing ensemble classification, and different ensemble 
classifier like the random forest, AdaBoost, and ensemble voting algo-
rithms on Recombination Hotspots, σ70 promoters, RNA editing, and 
DNA binding proteins problem respectively. 

3.2.1. Recombination hotspot prediction 
For the Recombination hotspot prediction dataset, the results are 

presented in Table 4. The first part of the table shows that among the 
single classifiers, Logistic regression performs significantly close. Since 
SVM and LR both are using linear decision boundaries, their perfor-
mance very close to each other. However, when we turn to ensembles, 
we could notice that the Random Forest algorithm performs significantly 
better than other methods. In the lower part of the table, we present the 
results obtained by SubFeat using different combinations of single base 
classifiers. Note that, for this paper, we have used only three base 
classifiers. The performance of all decision tree combinations somewhat 
lacks compared to others. Among all these combinations, it appears that 
Naive Bayes and SVM combinations are working best. Here we can 
conclude that the mix of the base classifiers is not working well 
compared to the variety of using the same base classifiers. Also, note that 
these results by a right margin better than the results obtained by the 
ensemble methods. 

Fig. 4 shows the area under the receiver operating characteristic 
curves analysis for the recombination hotspot dataset. In this figure, we 
also put the standard deviations among all the runs. We could notice that 
the proposed method shows higher performance, and over the different 
thresholds, its performance is superior to the other techniques, single or 
ensemble. The strong understanding of the proposed method, SubFeat in 
terms of AUC, provides evidence on the method’s robustness. 

3.2.2. σ70 promoters prediction 
Table 5 presents the results of our experiments on the σ70 promoters 

prediction problem. Here too, we have presented the results in three 
parts: single, ensembles and SubFeat and its variations. We note that 
logistic regression outperforms the other methods from the results ob-
tained in the single classifier experiments. However, once again, the 
performance of SVM is very close to logistic regression, which is ex-
pected. In the ensemble part, the results are improved compared to the 
single classifier results. Here, we could notice that Random FOest out-
performs the rest of the methods. Moving to the third part of the table, 
we find the products of the different combinations of the single classi-
fiers within the SubFeat framework. Similar to the results on the 
recombination hotspot problem, here too, we notice that the mixed 
combination of the single classifiers is not working as compared to the 
ensemble created with the same type of classifier. The best performing 
combination was produced by the Naive Bayes algorithm. SVM and lo-
gistic regression followed closely. Decision Tree combinations per-
formed poorly. Also, note that this dataset was the largest among the 
datasets considered for this work. 
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The receiver operating characteristic analysis on the σ70 promoters 
prediction dataset are presented using a curve of false-positive rate 
against true positive rate and shown in Fig. 5. SubFeat method here 
outperforms the other techniques with an adequate margin again. Note 
that the threshold changes on the x-axis of the curve do not change the 
accurate favorable rates. For a balanced dataset chosen for the purpose, 
this is a strong indication of the superior performance of SubFeat over the 
other methods compared in this work. 

3.2.3. A-to-I RNA editing site prediction 
We present the experimental results on the A-to-I RNA editing sites 

prediction problem in Table 7. Note that this is a relatively smaller 
dataset compared to the other datasets. Here the performance of the 
single classifiers shown in the first part of the table is dominated by the 
logistic regression classifier in terms of all the performance metrics. 
Here, among the ensemble methods ensemble voting method performs 
significantly better compared to Random Forest or AdaBoost algorithms. 
However, SubFeat once again outperforms all these methods in terms of 
performance. This is clearly shown in the values reported in the lower 

part of the table. Here, we see that SubFeat follows the same trend as the 
previous datasets, that the ensemble is working better when the same 
classifier is chosen as the base classifier. However, Naive Bayes is per-
forming slightly better, and SVM and logistic regression follow closely. 

The ROC analysis for this dataset is shown in Fig. 6. Note that, for this 
dataset though SubFeat is still superior in performance in terms of AUC 
values, the difference is not that high as compared to the other datasets. 
Here, single classifier is working better compared to other datasets. 

3.2.4. DNA binding proteins prediction 
Experimental results on the DNA binding proteins prediction prob-

lem are reported in Table 7. We could note similar trends for this dataset 
as well. Logistic regression performs best in the single classifier group. 
Identical to that performance combination of logistic regression classi-
fier used in the SubFeat is best among all the classification algorithms. 
The performance of this combination is slightly weaker in terms of AUC 
compared to the all SVM combination. This is due to the better precision 
values obtained by the SVM combination, which is also reflected in the 
specificity values reported in the table. The ROC analysis is shown in 

Table 4 
Experimental result on recombination hotspot prediction dataset.  

Algorithm Precision F1 Acc MCC Sn Spc AUC 

Result of single classifier algorithms 
SVM 0.8794 0.8016 0.7826 0.5633 0.7950 0.7673 0.8667 
NB 0.7923 0.5975 0.6525 0.3636 0.8065 0.5794 0.7969 
LR 0.8839 0.8034 0.7854 0.5687 0.8018 0.7658 0.8687 
DT 0.7070 0.7547 0.7339 0.4659 0.7574 0.7061 0.7321 
Result of using different ensemble classifiers 
Random Forest 0.8913 0.8322 0.8120 0.6225 0.8098 0.8150 0.8874 
Adaboost 0.8589 0.7982 0.7760 0.5492 0.7827 0.7672 0.8497 
Ensemble Voting 0.8794 0.7754 0.7699 0.5471 0.8244 0.7186 0.8654 
Result of feature subspacing ensemble classification 
SVM+SVM+SVM 0.9724 0.8760 0.8464 0.7158 0.7835 0.9865 0.9708 
NB+NB+NB 0.9681 0.9078 0.8946 0.7911 0.8674 0.9351 0.9647 
LR+LR+LR 0.9697 0.8731 0.8420 0.7079 0.7787 0.9856 0.9706 
DT+DT+DT 0.8562 0.8440 0.8297 0.6584 0.8420 0.8154 0.8771 
SVM+NB+LR 0.9505 0.8871 0.8632 0.7420 0.8072 0.9739 0.9423 
NB+LR+SVM 0.9498 0.8907 0.8676 0.7502 0.8113 0.9780 0.9441 
LR+SVM+NB 0.9471 0.8925 0.8697 0.7548 0.8128 0.9813 0.9421 
DT+SVM+DT 0.9194 0.8689 0.8483 0.6980 0.8227 0.8884 0.9079 
SVM+DT+DT 0.9148 0.8684 0.8481 0.6976 0.8233 0.8871 0.9065 
LR+LR+DT 0.9199 0.8852 0.8609 0.7366 0.8060 0.9689 0.9047 
SVM+LR+DT 0.9182 0.8824 0.8582 0.7286 0.8070 0.9562 0.9032 
SVM+NB+DT 0.9382 0.8916 0.8731 0.7513 0.8355 0.9354 0.9313  

Table 5 
Experimental result on σ70 promoters dataset.  

Algorithm Precision F1 Acc MCC Sn Spc AUC 

Result of single classifier algorithms 
SVM 0.8924 0.8238 0.7647 0.4721 0.8070 0.6742 0.8229 
NB 0.8883 0.7936 0.7473 0.4790 0.8501 0.6093 0.818 
LR 0.8978 0.8262 0.7655 0.4696 0.8013 0.6835 0.8286 
DT 0.7377 0.7604 0.6881 0.3142 0.7638 0.5490 0.6574 
Result of using different ensemble classifiers 
Random Forest 0.9024 0.8331 0.7735 0.4862 0.8036 0.7020 0.8368 
Adaboost 0.8848 0.8106 0.7490 0.4399 0.7997 0.6452 0.8084 
Ensemble Voting 0.8967 0.8188 0.7652 0.4865 0.8255 0.6563 0.8243 
Result of feature subspacing ensemble classification 
SVM+SVM+SVM 0.9589 0.8860 0.8098 0.5664 0.8007 0.8408 0.9232 
NB+NB+NB 0.9513 0.8556 0.8203 0.6255 0.9008 0.7038 0.9084 
LR+LR+LR 0.9598 0.8552 0.7886 0.5170 0.7745 0.8470 0.9222 
DT+DT+DT 0.8261 0.8227 0.7605 0.4577 0.7975 0.6758 0.7786 
SVM+NB+LR 0.9442 0.8680 0.8175 0.5853 0.8233 0.8020 0.8969 
NB+LR+SVM 0.9446 0.8663 0.8153 0.5796 0.8225 0.7962 0.8964 
LR+SVM+NB 0.9443 0.8670 0.8166 0.5836 0.8240 0.7970 0.8964 
DT+SVM+DT 0.9007 0.8406 0.7791 0.4935 0.7958 0.7336 0.8275 
SVM+DT+DT 0.9021 0.8447 0.7857 0.5101 0.8023 0.7413 0.8320 
LR+LR+DT 0.9178 0.8508 0.7862 0.5079 0.7829 0.7980 0.8414 
SVM+LR+DT 0.9222 0.8563 0.7960 0.5326 0.7939 0.8031 0.8545 
SVM+NB+DT 0.9297 0.8602 0.8119 0.5765 0.8367 0.7566 0.8736  
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Table 6 
Experimental result on RNA editing dataset.  

Algorithm Precision F1 Acc MCC Sn Spc AUC 

Result of single classifier algorithms 
SVM 0.8788 0.7809 0.7918 0.5894 0.8019 0.7832 0.860 
NB 0.8263 0.7359 0.7546 0.5165 0.7706 0.7407 0.7990 
LR 0.9021 0.8041 0.8128 0.6342 0.8182 0.8088 0.8823 
DT 0.6627 0.7087 0.7224 0.4535 0.7187 0.7256 0.7219 
Result of using different ensemble classifiers 
Random Forest 0.8801 0.7379 0.7765 0.5724 0.8500 0.7315 0.8483 
Adaboost 0.8153 0.7217 0.7409 0.4901 0.7476 0.7357 0.7887 
Ensemble Voting 0.9009 0.7779 0.7965 0.6048 0.8184 0.7794 0.8775 
Result of feature subspacing ensemble classification 
SVM+SVM+SVM 0.9315 0.8007 0.8310 0.6833 0.9225 0.7764 0.9137 
NB+NB+NB 0.9155 0.8386 0.8500 0.7065 0.8694 0.8339 0.9059 
LR+LR+LR 0.9302 0.8048 0.8276 0.6680 0.8860 0.7882 0.9144 
DT+DT+DT 0.8251 0.8070 0.8106 0.6280 0.7993 0.8223 0.8619 
SVM+NB+LR 0.8932 0.8070 0.8283 0.6692 0.8813 0.7904 0.88024 
NB+LR+SVM 0.9012 0.7932 0.8219 0.6598 0.8892 0.7780 0.8896 
LR+SVM+NB 0.9002 0.8060 0.8288 0.6704 0.8860 0.7890 0.8831 
DT+SVM+DT 0.8993 0.8263 0.8382 0.6843 0.8647 0.8176 0.8876 
SVM+DT+DT 0.8900 0.8106 0.8243 0.6553 0.8448 0.8083 0.8796 
LR+LR+DT 0.8974 0.8116 0.8293 0.6686 0.8677 0.8011 0.8840 
SVM+LR+DT 0.8779 0.7837 0.8097 0.6351 0.8659 0.7716 0.8584 
SVM+NB+DT 0.8846 0.7999 0.8179 0.6659 0.8533 0.7918 0.8686  

Table 7 
Experimental result on DNA binding proteins dataset.  

Algorithm Precision F1 Acc MCC Sn Spc AUC 

Result of single classifier algorithms 
SVM 0.7925 0.6986 0.7108 0.4279 0.7472 0.6812 0.7849 
NB 0.5512 0.6643 0.5754 0.1623 0.5577 0.6297 0.5708 
LR 0.8129 0.7303 0.7333 0.4696 0.7555 0.7130 0.7995 
DT 0.5864 0.6273 0.6189 0.2387 0.6272 0.6103 0.6187 
Result of using different ensemble classifiers 
Random Forest 0.7821 0.7072 0.7000 0.4009 0.7058 0.6940 0.7769 
Adaboost 0.7145 0.6760 0.6673 0.3358 0.6734 0.6611 0.7190 
Ensemble Voting 0.7768 0.7181 0.6922 0.3879 0.6753 0.7160 0.7583 
Result of feature subspacing ensemble classification 
SVM+SVM+SVM 0.9051 0.7741 0.7227 0.4833 0.6641 0.8697 0.9004 
NB+NB+NB 0.6075 0.6908 0.5990 0.2256 0.5704 0.7042 0.6440 
LR+LR+LR 0.8788 0.8128 0.7903 0.5905 0.7488 0.8542 0.8822 
DT+DT+DT 0.6617 0.6694 0.6634 0.3276 0.6728 0.6538 0.6987 
SVM+NB+LR 0.7923 0.7620 0.7105 0.4524 0.6578 0.8363 0.7618 
NB+LR+SVM 0.7914 0.7602 0.7071 0.4465 0.6543 0.8357 0.7644 
LR+SVM+NB 0.7900 0.7568 0.7055 0.4406 0.6550 0.8234 0.7615 
DT+SVM+DT 0.7791 0.7288 0.7041 0.4117 0.6861 0.7291 0.7647 
SVM+DT+DT 0.7810 0.7365 0.7120 0.4277 0.6918 0.7403 0.7714 
LR+LR+DT 0.7914 0.7770 0.7538 0.5135 0.7241 0.7976 0.7744 
SVM+LR+DT 0.7934 0.7715 0.7427 0.4944 0.7071 0.7993 0.7734 
SVM+NB+DT 0.7704 0.7258 0.6735 0.3639 0.6362 0.7525 0.7477  

Fig. 4. ROC analysis for recombination hotspot problem dataset.  Fig. 5. ROC analysis for σ70 promoters problem dataset.  
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Fig. 7 in more details. The plot shows the superior performance of 
SubFeat over all other methods. 

4. Comparison with other packages 

The SubFeat tool works with different feature selection techniques 
that randomly selects from each category, which the user may customize 
for his experiments. We strongly believe if the user selects the particular 
feature in random tries, the result will increase. We have justified our 
hypothesis by experimentation with the four well-established datasets. 
The comparison of our using datasets and technical comparison with 
other software packages PyFeat (Muhammod et al., 2019), 
BioSeq-Analysis (Liu, 2019), iLearn (Chen et al., 2020) and iFeature 
(Chen et al., 2018) are given in Tables 8–11. 

5. Discussion 

In this paper, we have proposed an ensemble method where the full 
feature space was divided into subspaces. From the results, we can 
conclude that the subspace method provides better prediction results 
than the single classifiers and the best ensemble algorithms like Ada-
Boost, Random Forest, etc. We have tested the algorithm’s performance 
on a full space feature representation for protein, DNA, and RNA se-
quences datasets. However, it is possible to improve our accuracy by 
using a different feature space and feature selection techniques. We have 
only tested our method on balanced binary classification biological 
datasets. We have tested using overlaps of the feature-spaces; however, 
the number of the subspace is still a parameter to be tested compre-
hensively. Therefore, in the future, we plan to work with imbalanced 
data, independent and large numbers of the dataset. The simplicity of 
these method help to increase the accuracy of biological sequence 
datasets. 

As a method, SubFeat shows better performance in all metrics than 
single and ensemble classifiers as found in the results and analysis 
offered in the previous section. That establishes the claim of the hy-
pothesis of using an ensemble and dividing the feature space into sub-
spaces. However, another subtle observation could be made from the 
results that using a similar classifier as a base classifier is achieving 
better results compared to the mix of the classifiers. This study was 
limited to four datasets, and this remains still a question to be explored 
in detail if the mix parameter can also bring good results. We believe that 
might be utilized as well. Two of the variables or parameters of the 
SubFeat framework are less explored in this paper. They are np, the 
number of partitions set to 3 in all the experiments, and overlap which is 
kept false for all the experiments. 

We believe the answer to the performance largely depends on the 
feature space or the feature representation. In this work, we have limited 
to use of only sequence-based features. In problems like DNA binding 
protein prediction, we have noticed application of structural and evo-
lutional features has been used successfully (Chowdhury et al., 2017; 
Zaman et al., 2017). In the cases of DNA and RNA sequences as well, the 
researchers have used many other types of feature representation tech-
niques. Note that the knowledge number of partitions for the feature 
space will obviously be enhanced by the selection of such methods, as 
previously we have seen group-based feature selection to be performing 
better in a wide range of problems (Adilina et al., 2019; Islam et al., 

Fig. 6. ROC analysis for RNA editing prediction problem dataset.  

Fig. 7. ROC analysis for DNA binding proteins prediction problem dataset.  

Table 8 
Technical comparison on different packages.  

Functionality SubFeat PyFeat BioSeq- 
Analysis 

iLearn iFeature 

Ensemble Yes No No Yes Yes 
Overlap Yes No No No No 
Overall functionality Limited Vast Vast Vast Vast 
Hyper-parameter 

Tuning 
Limited Limited Vast Vast Vast 

Feature generation 
ability 

Limited Vast Vast Vast Vast 

Cluster (machine 
learning) 

No No No Yes Yes 

Prediction (machine 
learning) 

Yes No Yes Yes Yes 

Online predictor No No Yes Yes Yes  

Table 9 
Result comparison of RNA dataset on different packages.  

Result SubFeat PyFeat BioSeq-Analysis iLearn iFeature 

Acc 83.23 76.23 76.73 77.13 80.00 
AUC 0.9286 0.859 0.8297 0.8527 0.9027 
MCC 0.6847 0.536 0.535 0.5672 0.6326  

Table 10 
Result comparison of DNA-binding/protein dataset on different packages.  

Result SubFeat PyFeat BioSeq-Analysis iLearn iFeature 

Acc 82.52 78.28 74.73 76.57 79.74 
AUC 0.9351 0.833 0.8097 0.8173 0.8927 
MCC 0.6510 0.5090 0.506 0.5275 0.6526  

Table 11 
Result comparison of σ70 promoters dataset on different packages.  

Result SubFeat PyFeat BioSeq-Analysis iLearn iFeature 

Acc 80.98 67.91 76.37 75.97 79.12 
AUC 0.9232 0.7438 0.8297 0.8173 0.8527 
MCC 0.5664 0.3592 0.4726 0.5275 0.5526  
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2018). However, in those works, the idea of the ensemble method was 
not explored. We kept the experimental setting simpler and thus not 
extended the feature space. We believe using a larger and enhanced 
feature space will improve the results. 

Another parameter is the overlapping of the feature spaces. Though 
we have not reported these four datasets, we have seen that the overlap 
parameters are not working well. We observed that sensitivity suffers if 
we accept overlap too much. Note that in a previous work (Rahman 
et al., 2019b), overlapping has been found useful for promoter predic-
tion. The results presented in this paper are much superior compared to 
the ones reported in Rahman et al. (2019b). However, note that the 
objective of this paper is limited to show the effectiveness of the 
ensemble based on feature subspacing. 

5.1. Python Package 

We have made our method, SubFeat available as a Python-based 
package. It is freely available for use from https://github.com/fazlulh 
aquejony/SubFeat. The package includes all the parameters that we 
have discussed and provided as an option for the method. A simple-to- 
follow user guide is also provided on how to install and use the pack-
age (e.g., command-line, experiments). We firmly believe that further 
exploration is possible for this package, and it will be useful for 
computational biologists working in the relevant fields. 

6. Conclusion 

In this paper, we have proposed an ensemble method where the full 
feature space was divided into subspaces. From the results, we can 
conclude that the subspace method provides better prediction results 
compared to both the single classifiers and the best ensemble algorithms 
like AdaBoost, Random Forest, etc. We have tested the performance of 
the algorithm on a full space feature representation for protein, DNA, 
and RNA sequences datasets. We have also tested our result by random 
selection and random overlapped selection. We also compared our 
proposed method. However, it is possible to improve our accuracy by 
using a different feature space and feature selection techniques. We have 
only tested our method on balanced binary classification biological 
datasets. We have tested using overlaps of the feature-spaces; however, 
the number of the subspace is still a parameter to be tested compre-
hensively. Therefore, in the future, we plan to work with imbalanced 
data, independent and large numbers of datasets. The simplicity of these 
methods helps to increase the accuracy of biological sequence datasets. 
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